Research Personnel Publications Databases Facilities Services Training Seminars
The University of Georgia Complex Carbohydrate Research Center
Employment CCRC History Location Links Centers
Bacterial Polysaccharides
Biomass and Bioenergy
Carbohydrate Synthesis and Chemical Biology
Computational Simulations
Conformational Analysis
Enzymes involved in carbohydrate metabolism
Glycoconjugates in Animal Development, Disease and Cancer
Glycoconjugates in Host-Pathogen Interactions
Mass Spectrometry
NMR Spectroscopy
Plant Cell Walls
Plant Polysaccharides - Biosynthesis, Structure, and Function
Protein-Carbohydrate Interactions
Signal Transduction in Plants

Ron Orlando
Professor of Biochemistry and Molecular Biology, and Chemistry

Development of mass spectrometric strategies to structurally characterize biologically active glycoproteins

Telephone: 706-542-4429
Fax: 706-542-4412

Short Biography
Research Interests
Lab-personal web site

Short Biography:
Dr. Orlando received his B.S. in natural science in 1983 from St. Mary's College of Maryland and his Ph.D. in analytical chemistry in 1988 from the University of Delaware. He joined the CCRC in January 1993. He heads the CCRC's mass spectrometry facility and was named a "Leader of Tomorrow" in 1995 by the journal Spectroscopy. In 1996 he was invited by the journal Analytical Chemistry to review the MS calculator Softshell. He has two U.S. patent applications pending. Dr. Orlando is a frequently invited seminar speaker at international colloquia and at research institutes, academic departments, and industrial organizations around the world. He was invited by the ACS Divisions of Analytical and Carbohydrate Chemistry to organize a session entitled, "Advances in Mass Spectrometry of Carbohydrates" at the 211th National Meeting of the American Chemical Society in March 1996 and chaired a session entitled, "Mass Spectrometry in the 21st Century" at the SUNBOR 50th Anniversary Symposium in Osaka, Japan, in June 1996. Full publications: 50.

To Top

Research Interests:
Dr. Orlando conducts research on using mass spectrometry (MS) to answer biological questions. He also is concerned with developing new methodologies to increase the amount of information obtained from MS experiments and to reduce the quantity of material needed for analysis. The procedures Dr. Orlando and his group have developed can currently elucidate the complete primary structures of the carbohydrate side chains of glycoproteins (including the stereochemistry, linkage, and anomeric configuration of each monosaccharide) from only low picomole quantities of sample.

The carbohydrate side chains of enzymatically glycosylated proteins play important, often essential, roles in the functions of glycoproteins. Carbohydrates linked through asparagine residues (N-linked) of glycoproteins participate in such health-related processes as hormone action, cancer, viral infection, and cell development and differentiation. The biological functions of carbohydrate chains attached through serine or threonine residues (O-linked) of glycoproteins are less well-defined, although these carbohydrate chains appear to be required for the biosynthesis, secretion, and compartmentalization of some glycoproteins. Alternatively, the non-enzymatic glycosylation (glycation) of proteins is believed to disrupt the normal structure and function of proteins and has been implicated in a range of health problems, particularly those associated with diabetes such as the development of cataracts.

The structural characterization of complex biologically active glycoproteins, essential to understanding their biological functions, currently holds numerous challenges for the biomedical researcher. Biomedically relevant glycoproteins typically can only be isolated in picomole quantities, while many of the techniques available for structurally analyzing the carbohydrate chains require at least nanomole quantities of material. Furthermore, no generally applicable strategy has been developed to determine O-linked glycosylation sites. The most widely used techniques for studying the carbohydrate portions of glycoproteins incorporate chemical or enzymatic release of the carbohydrate side chains from the peptide backbone prior to their structural analysis. However, the separation of the carbohydrate side chains from the peptide means that the point of attachment for each carbohydrate chain and the carbohydrate heterogeneity at each glycosylation site cannot be determined.

Dr. Orlando and his group are involved in several research projects that will continue their development of new MS strategies to structurally characterize glycoproteins. This work focuses on analyzing glycopeptides prior to removal of their carbohydrate side chains and reducing the sample quantities required for these MS procedures. Currently, they can characterize the complete primary structure of a glycoprotein from only 1-10 picomole of sample, approximately 5,000 times less material than is needed for present conventional methods. This work is also expected to produce general schemes for analyses that are particularly challenging for existing methodology, such as determining O-linked glycosylation and/or glycation sites. As new techniques are developed and refined, they are used to structurally characterize biologically significant glycated and glycosylated proteins.

For example, the discovery of elevated levels of glycated albumins and hemoglobins in diabetic patients has focused attention on the roles played by glycation in a range of health-related problems. Glycation is prevalent in diabetics in particular because of the frequent occurrence of high blood sugar levels in these patients. This modification of protein chains results from the irreversible addition of a saccharide to the free amino groups of lysines or the N-terminus of a protein. However, the lack of sensitive analytical procedures to structurally characterize glycated proteins has limited most research in this area to those glycated proteins that are easily obtained in large quantities, rather than to being able to study the effects of glycation in critical biomedical processes. Glycation of difficult-to-obtain proteins, therefore, may be responsible for a number of health-related problems in diabetics, including the development of cataracts. Glycation is believed to play a role in cataract development because it purportedly disrupts the structure of the eye lens proteins (crystallins). The tight, stable packing of the crystallins provides the optical characteristics necessary for vision. When this packing is disrupted by glycation, the refractive index of the lens is altered, causing light scattering and eventual lens opacity (cataracts).

Dr. Orlando's group is investigating the structural characterization of crystallins obtained from human eye lenses of healthy and diabetic patients. A major goal of this investigation is to determine the extent of crystallin glycation and the sites of sugar attachment in the crystallins of diabetic patients as compared to healthy individuals to learn more about the role of glycation in cataract development. The techniques developed during the study of glycated crystallins are expected to open up new areas of investigation concerning the role of glycation in other health-related problems associated with diabetes, such as kidney dysfunction, osteoporosis, and osteopenia. Dr. Orlando's work is supported by the National Institutes of Health, the National Science Foundation, and industrial sources.

To Top

Publications: Author's Last Name: Orlando

Journal Articles
Book Chapters are listed at the bottom of this page.

Z. Hao, U. Avci, L. Tan, X. Zhu, J. Glushka, S. Pattathil, S. Eberhard, T Sholes, GE Rothstein, W Lukowitz, R. Orlando, MG Hahn, D. Mohnen. 2014. Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Frontiers in Plant Science 5: 357-.

L. Tan, S. Eberhard, S. Pattathil, C. Warder, J. Glushka, C. Yuan, Z. Hao, X. Zhu, U. Avci, J.S. Miller, D. Baldwin, C. Pham, R. Orlando, A. Darvill, M.G. Hahn, M. Kieliszewski, D. Mohnen. 2013. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. DOI 10.1105/tpc.112.107334. Plant Cell 25(1): 270-287.

L Tan, S Eberhard, S Pattathil, C Warder, J Glushka, C Yuan, Z Hao, X Zhu, U Avci, JS Miller, D Baldwin, C Pham, R Orlando, A Darvill, MG Hahn, M Kielszewski, D Mohnen. 2013. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arbinogalactan protein. Plant Cell 25(1): 270-287. PMID:23371948

P. Shah, D.A. Powell, R. Orlando, C. Bergmann, G. Gutierrez-Sanchez. 2012. A proteomic analysis of ripening tomato fruit infected by Botrytis cinerea. J Proteome Res 11: 2178-2192. PMID:22364583

C.R. Kinsinger, J. Apffel, M. Baker, X. Bian, C.H. Borchers, R. Bradshaw, M.Y. Brusniak, D.W. Chan, E.W. Deutsch, B. Domon, J. Gorman, R. Grimm, W. Hancock, H. Hermjakob, D. Horn, C. Hunter, P. Kolar, H.J. Kraus, H. Langen, R. Linding, R.L. Moritz, G.S. Omenn, R. Orlando, A. Pandey, P. Ping, A. Rahbar, R. Rivers, S.L. Seymour, R.J. Simpson, D. Slotta, R.D. smith, S.E. Stein, D.L. Tabb, D. Tagle, J.R. 3rd Yates, H. Rodriguez. 2012. Recommendations for mass spectrometry data quality metrics for open access data (corollary to the Amsterdam principles). Proteomics Clin. Appl 5: 580-589. PMID:22213554

D. Seidman, D. Johnson, V. Gerbasi, D. Golden, R. Orlando, S. Hajduk. 2012. Mitochondrial membrane complex that contains proteins necessary for tIRNA import in Trypanosoma brucei. J. Biol. Chem. 287: 8892-8903. PMID:22267727

Y. Liu, P.C. Dos, X. Zhu, R. Orlando, D.R. Dean, D. Soll, J. Yuan. 2012. Catalytic mechanismof Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediatd by disulfide and persulfide. J.Biol. Chem. 287: 5426-5433. PMID:22167197

E. Condac, H. Strachan, G. Gutierrez-Sanchez, B.M. Brainard, C. Giese, C. Heiss, D. Johnson, P. Azadi, C. Bergmann, R. Orlando. 2012. The C-terminal fragment of axon guidance molecular Slit3 binds heparin and neutralizes heparin anticoagulant activity. Glycobiol. 22: 1183-1192. PMID:22641771

E. Condac, H. Strachan, D. King, G. Kemp, G. Gutierrez-Sanchez, B.M. Brainard, C. Giese, C. Heiss, D. Johnson, P. Azadi, C. Bergmann, R. Orlando. 2012. SPR and differentia proteolysis/MS provide further insight into the interaction between PGIP2 and EPGs. Fungal Biol. 116: 737-746. PMID:22749160

M.A. Atmodjo, Y. Sakuragi, X. Zhu, J.A. Burrell, S.S. Mohanty, J.A. Atwood III, R. Orlando, H.V. Scheller, D. Mohnen. 2011. GAUT1:GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. Proc. Natl. Acad. Sci. USA 108: 20225-20230. PMID:22135470

R. Orlando. 2010. Quantitative glycomics. Methods Mol. Biol. 600: 31-49. PMID:19882119

G. Alvarez-Manilla, N.L. Warren, J.A. Atwood, S. Dalton, R.C. Orlando, J.M. Pierce. 2010. Glycoproteomic analysis of embryonic stem cells: Identification of potential glycobiomarkers using lectin affinity chromatography of glycopeptides. J. Proteome Res. 9: 2062-2075. PMID:19545112

J. Cui, Y. Chen, J. Chou, L. Sun, L. Chen, J. Suo, A. Ni, M. Zhang, X. Kong, L.L. Hoffman, J. Kang, X Lv, Y Su, Y. Gao, H. Zhang, V. Olman, G. Li, D. Johnson, D.W. Tench, I.J. Amster, R. Orlando, J.D. Puett. 2010. Biomarket Identification for Gastric Cancer. Nucleic Acids Research : 1-11.

J. Cui, Y. Chen, K.J. Chou, L. Sun, L. Chen, J. Suo, J.A. Downie, M. Zhang, X. Kong, L.L. Hoffman, J. Kang, X Lv, Y. Yozutsumi, M.Y. Gao, H. Zhang, V. Olman, G. Felix, D. Johnson, D.W. Tench, I.J. Amster, R. Orlando, J.D. Puett, F. Li, Y. Xu. 2010. Biomarket Identification for Gastric Cancer. Nucleic Acids Research : 1-11.

J.J. Espino, G. Gutierrez-Sanchez, N. Brito, P. Shah, R. Orlando, C. Gonzalez. 2010. The Botrytis cinerea early secretome. Proteomics 10: 3020-3034.

F. Cho-Ngwa, X. Zhu, J.A. Metuge, A. Daggfeldt, K. Gronvik, R. Orlando, J.A. Atwood, V.P. Titanji. 2010. Identification of in vivo released products of Onchocerca with diagnostic potential and characterization of a dominant member, the OVICF intermediate filament. Infection, Genetics and Evolution In press.

P.N. Ulrich, M. Park, V. Martins, K. Moles, P. Rohloff, J.A. Atwood,, R.L. Tarleton, R. Orlando, R. Decampo. 2010. Identification of contractile vacuole proteins in Trypanosoma cruzi. Proteomics submitted: -.

R. Orlando, J.M. Lim, J.A. Atwood, P.M. Angel, M. Feng, G. Alvarez-Manilla, K.W. Moremen, W.S. York, M. Tiemeyer, J.M. Pierce, S. Dalton, R.L. Wells. 2009. IDAWG: Metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells. J. Proteome Res. 8: 3816-3823. PMID:19449840

P. Shah, J.A. Atwood, H.El Mubarek, G.K. Podila, M.R. Davis, R. Orlando. 2009. Comparative proteomic analysis of Botrytis cinerea secretome. J. Proteome Res. 8: 1123-1130. PMID:19140674

P. Shah, G. Gutierrez-Sanchez, R. Orlando, C. Bergmann. 2009. A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics 9: 3126-3135. PMID:19526562

T.A. Minning, D.B. Westherly, J. III Atwood, R. Orlando, R.L. Tarleton. 2009. The steady-state transcriptome of the four major-life-cycle stages of Trypanosoma cruzi. BMC Genomics 10: 370-. PMID:19664227

T. Weinkopff, J.A., Atwood, G.A. Punkosdy, D. Moss, D.B. Weatherly, R. Orlando, P. Lammie. 2009. Identification of antigenic brugia adult worm proteins by peptide mass fingerprinting. J. Parasitology 95: 1429-1435. PMID:19537848

J.A. Atwood III, L. Cheng, G. Alvarez-Manilla, N.L. Warren, W.S. York, R. Orlando. 2008. Quantitation by isobaric labeling: applications to glycomics. J Proteome Res 7: 367-374. PMID:18047270

N.T. Seyfried, L.C. Husentruyt, J.A. Atwood, T.N. Seyfried, R. Orlando. 2008. Up-regulation of NG2 proteoglycan and interferon induced transmembrane proteins 1 and 3 in mouse astrocytoma: A membrane proteomics approach. Cancer Letters 263: 243-252. PMID:18281150

J.C. Botelho, J.A. Atwodd, L. Cheng, G. Alvarez-Manilla, W.S. York, R. Orlando. 2008. Quantification by isobaric labeling (QUIBL)for the comparative glycomic study of O-linked glycans. Intl. J. Mass Spectrom 278: 137-142.

D.L. Baker, N.T. Seyfried, J.H. Willis, R. Orlando, R.M. Terns, M.P. Terns. 2008. Determination of protein-RNA interaction sites in the Cbf5-H/ACA guide RNA complex by mass spectrometric protein footprinting. Biochemistry 47: 1500-1510. PMID:18205399

O. Charvatova, B.L. Foley, M. Bern, J. Sharp, R. Orlando, R.J. Woods. 2008. Quantifying protein interface footprinting by hydroxyl radical oxidation and molecular dynamics simulation: application to galectin-1. J. Am. Soc. Mass Spectrom. 19: 1692-1705. PMID:18707901

P.M. Angel, J.M. Lim, L. Wells, C. Bergmann, R. Orlando. 2007. A potential pitfall in 18O-based N-linked glycosylate site mapping. Rapid Commun. Mass Spectrom. 21: 674-682. PMID:17279607

G. Alvarez-Manilla, N.L. Warren, T. Abney, J.A. Atwood, P. Azadi, W.S. York, M. Pierce, R. Orlando. 2007. Tools for glycomics: relative quantitation of glycans by isotopic permethylation using 13CH3I. Glycobiology 17: 677-6787. PMID:17384119

N.T. Seyfried, J.A. Atwood,, A. Yongye, A. Almond, A.J. Day, R. Orlando, R.J. Woods. 2007. Fourier transform mass spectrometry to monitor hyaluronan-protein interactions: use of hydrogen/deuterium amide exchange. Rapid Commun. Mass Spectrom. 21: 121-131. PMID:17154353

P.D. Curtis, J.A. Atwood, R. Orlando, L.J. Shimkets. 2007. Proteins associated with the Myxococcus xanthus extracellular matrix. J. Bacteriol. 189: 7634-7642. PMID:17766415

P.M. Angel, R. Orlando. 2007. Quantitative carbamylation as a stable isotopic labeling method for comparative proteomics. Rapid Commun. Mass Spectrom. 21: 1623-1634. PMID:17465008

N.R. Matheson, J.M.C. Botelho, R.J. McNall, V. Belozerov, W.A. Dunn, T. Mize, R. Orlando, J.H. Willis. 2007. Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem. Mol. Biol. 37: 135-146. PMID:17244542

J.A. Atwood III, L. Cheng, G. Alvarez-Manilla, N.L. Warren, W.S. York, R. Orlando. 2007. Quantitation by isobaric labelling: applications to glycomics. J. Proteome Res. 7: 367-374. PMID:18047270

G. Alvarez-Manilla, J.A. Atwood, Y. Guo, N.L. Warren, R. Orlando, M. Pierce. 2006. Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J. Proteome Res. 5: 701-708. PMID:16512686

B.D. Woosley, M. Xie, L. Wells., R. Orlando, D. Garrison, D. King, C. Bergmann. 2006. Comprehensive glycan analysis of recombinant Aspergillus niger-endo-polygalacturonase C. Anal. Biochem. 354: 43-53. PMID:16697346

L. Feng, R. Orlando, J.H. Prestegard. 2006. Amide proton back-exchange in deuterated peptides: Applications to MS and NMR analyses. J. Anal. Chem 78: 6885-6892. PMID:17007511

B.D. Woosley, Y.H. Kim, V.S. Kumar, L. Wells, D. King, R. Poe, R. Orlando, C. Bergmann. 2006. Complete glycan analysis of recombinant Aspergillus niger endo-polygalacturonase A. Carbohydr. Res. 341: 2370-2378. PMID:16854399

P.M. Angel, R. Orlando. 2006. Trypsin is the primary mechanism by which the (18)O isotopic label is lost in quantitative proteomic studies. Anal. Biochem. 359: 26-34. PMID:17046705

J.A. Atwood, T.A. Minning, F. Ludolf, G. Alvarez-Manilla, D.B. Weatherly, R.L. Tarleton, R. Orlando. 2006. Glycoproteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling. J. Proteome Res. 5: 3376-3384. PMID:17137339

M.F. Mouat, K.V.S. Kolli, R. Orlando, J.L. Hargrove, A. Grider. 2005. The effects of quercetin on SW480 human colon carcinoma cells: a proteomic study. Nutrition J. 4: 11-11. PMID:15748282

D.B. Weatherly, J.A. Atwood, T.A. Minning, C. Carvola, R.L. Tarleton, R. Orlando,, R. Orlando. 2005. A heuristic method for assigning a false discovery rate for protein identifications from mascot database search results. Mol. Cell. Proteomics 4: 762-772. PMID:15703444

J.A. Atwood, D.B. Weatherly, T.A. Minning, C. Cavola, R. Orlando, R.L. Tarleton. 2005. The Trypanasoma cruzi proteome. Science 309: 473-476. PMID:16020736

J.A.. Atwood, S.S. Sahoo, G.A. Manilla, D.B. Weatherly, K.V.S. Kolli, R. Orlando, W.S. York. 2005. Simple modification of a protein database for mass spectral identification of N-linked glycopeptides. Rapid Commun. Mass Spectrom. 19: 3002-3006. PMID:16196021

M. Xie, G.H. Krooshof, J.A. Atwood, J.A.E. Benen, C. Bergmann, R. Orlando. 2005. Post-translational modifications of recombinant B. cinerea EPG 6. Rapid Commun. Mass Spectrom. 19: 3389-3397. PMID:16259040

M. Kamar, G. Alvarez-Manilla, T. Abney, P. Azadi, V.S.K. Kolli, R. Orlando, K.V.S. Kolli, M. Pierce. 2004. Analysis of the site-specific N-glycosylation of b1,6N acetyl-glucosaminyltransferase V. Glycobiology 14: 583-592. PMID:15084511

M.J. Sheehy, J.F. Gallagher, M. Yamashita, Y. Ida, J. White-Colangelo, J. Johnson, R. Orlando, P.T.M. Kenny. 2004. Synthesis and structural characterization of redox-responsive N-ferrocenoyl amino acid esters; the X-ray crystal structure of N-ferrocenoyl alanine methyl ester; electrochemical anion recognition and 1H NMR complexation studies. J. Organometallic Chem. 689: 1511-1520.

L. Feng, R. Orlando, J.H. Prestegard. 2004. Mass spectrometry assisted assignment of NMR resonances in 15N labeled proteins. J. Am. Chem. Soc. 126: 14377-14379. PMID:15521756

Y. Chu, M.F. Mouat, J.A. Coffield, R. Orlando, A. Grider. 2003. Expression of P2X6, a purinergic receptor subunit, is affected by dietary zinc deficiency in rat hippocampus. Biological Trace Element Res. 91: 77-88.

M.E. Warren, H.C.M. Kester, J. Benen, J. Colangelo, J. Visser, C. Bergmann, R. Orlando. 2002. Studies on the glycosylation of wild-type and mutant forms of Aspergillus niger pectin methylesterase. Carbohydr. Res. 337: 803-812. PMID:11996833

D. King, C. Bergmann, R. Orlando, J.A.E. Bensen, H.C.M. Kester, J. Visser. 2002. Use of amide exchange-mass spectrometry to study conformational changes within the endopolygalacturonase II/homogalacturonan/polygalacturonase-inhibiting protein system. Biochemistry 41: 10225-10233. PMID:12162737

D. King, M. Lumpkin, C. Bergmann, R. Orlando. 2002. Studying protein-carbohydrate interactions by amide hydrogen/deuterium exchange mass spectrometry. Rapid Commun. Mass. Spectrom. 16: 1569-1574. PMID:12203249

J. Colangelo, R. Orlando. 2001. On-target endoglycosidase digestions/MALDI-MS of glycopeptides. Rapid Commun. Mass Spectrom. 15: 2284-2289. PMID:11746894

S. Lin, P. Tornatore, D. King, R. Orlando, S.R. Weinbergers. 2001. Limited acid hydrolysis as a means of fragmenting proteins isolated upon ProteinChip array surfaces. Proteomics 1: 1172-1184. PMID:11990511

S.L. Schlindler, P. Tornatore, S.R. Weinbergers, D. King, R. Orlando. 2001. Limited acid hydrolysis as a means of fragmenting proteins isolated upon ProteinChip (R) array surfaces. Eur. J. Mass. Spectrom. 1: 131-141.

J. Watras, R. Orlando, I.I. Mararu. 2000. An endogenous sulfated inhibitor of neuronal inositol trisphosphate receptors. Biochemistry 39: 3452-3460. PMID:10727240

H.C.M. Kester, J.A.E. Benen, J. Visser, M.E. Warren, R. Orlando, C. Bergmann. 2000. Tandem mass spectrometric analysis of Aspergillus niger pectin methylesterase: mode of action on fully methylesterified oligogalacturonates. Biochem. J. 346: 469-474. PMID:10677368

L.J. Gonzalez, T. Takao, T. Shimizu, Y. Satomi, L. Betancourt, V. Besada, G. Padron, R. Orlando, T. Shirasawa, Y. Shimonishi. 2000. Differentiating alpha- and beta-aspartic acids by low-energy electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 14: 2092-2102. PMID:11114015

R. Orlando, A.H. Brockman, R.L. Tarleton. 2000. Identificacion de peptidos asociados al MHC de celulas infectadas por Trypanosoma cruzi mediante cromatografia liquida/espectrometria de masas en tandem. Biotecnologia Aplicada 17: 193-199.

A.H. Brockman, R. Orlando, R.L. Tarleton. 1999. A new liquid chromatography/tandem mass spectrometric approach for the identification of class I major histocompatibility complex-associated peptides that eliminates the need for bioassays. Rapid Commun. Mass Spectrom. 13: 1024-1030. PMID:10368978

J. Colangelo, V. Licon, J. Benen, C. Bergmann, R. Orlando. 1999. Characterization of the glycosylation of recombinant endopolygalacturonase I from Aspergillus niger. Rapid Commun. Mass Spectrom. 13: 1448-1453. PMID:10407337

J. Colangelo, R. Orlando. 1999. On-target exoglycosidase digestions/MALDI-MS for determining the primary structures of carbohydrate chains. Anal. Chem. 71: 1479-1482. PMID:10204046

J. Colangelo, V. Licon, J. Benen, J. Visser, C. Bergmann, R. Orlando. 1999. Characterization of the N-linked glycosylation site of recombinant pectate lyase. Rapid Commun. Mass Spectrom. 13: 2382-2387. PMID:10567938

L. Zhang, R. Orlando. 1999. Solid-phase extraction/MALDI-MS: extended ion-pairing surfaces for the on-target clean-up of protein samples. Anal. Chem. 71: 4753-4757. PMID:10546540

A.H. Brockman, N.N. Shah, R. Orlando. 1998. Optimization of a hydrophobic solid-phase extraction interface for matrix-assisted laser desorption/ionization. J. Mass Spectrom. 33: 1141-1147. PMID:9835069

V.S.K. Kolli, W.S. York, R. Orlando. 1998. Fast atom bombardment-mass spectrometry of carbohydrates contaminated with inorganic salts using crown ethers. J. Mass Spectrom. 33: 680-682. PMID:9692250

M.E. Warren, A.H. Brockman, R. Orlando. 1998. On-probe solid-phase extraction/MALDI-MS using ion-pairing interactions for the cleanup of peptides and proteins. Anal. Chem. 70: 3757-3761. PMID:9751020

Y. Yang, K.D. Arbtan, K.P. Carmichael, R. Orlando. 1998. Is canine hepatocerebellar degeneration syndrome an animal model for carbohydrate-deficient glycoprotein syndrome in humans? An example of sequencing glycoprotein glycans with mass spectrometry. Rapid Commun. Mass Spectrom. 12: 571-579. PMID:9934458

Y. Yang, J. Roestamadji, S. Mobashery, R. Orlando. 1998. The use of neamine as a molecular template: identification of the active site residues in the bacterial antibiotic resistance enzyme aminoglycoside 3`-phosphotransferase type IIa by mass spectrometry. Bioorg. Med. Chem. Lett. 8: 3489-3494. PMID:9934458

A.H. Brockman, B.S. Dodd, R. Orlando. 1997. A desalting approach for MALDI-MS using on-probe hydrophobic self-assembled monolayers. Anal. Chem. 69: 4716-4720. PMID:9375521

E. Chpak, V.S.K. Kolli, R. Orlando, M. Kieliszewski. 1997. Glycosylation specifics of the archetypal SER-HYP-HYP-HYP-HYP block of tomato extensin P1. Plant Physiol. 114: 331-.

S.C. Jao, K. Ma, T. Talafous, R. Orlando, M.G. Zagorski. 1997. Trifluoroacetic acid pretreatment reproducibly disaggregates the amyloid b-peptide. Amyloid: Int. J. Exp. Clin. Invest. 4: 240-252.

P.T.M. Kenny, K. Nomoto, R. Orlando. 1997. Fragmentation studies of gas-phase complexes between alkali metal ions and a biologically active peptide, achatin-I. Rapid Commun. Mass Spectrom. 11: 224-227.

M. Kieliszewski, R. Orlando. 1997. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of tomato extensin monomers and potato lectin. Phytochemistry 45: 9-14.

V.S.K. Kolli, R. Orlando. 1997. A new strategy for MALDI on magnetic sector mass spectrometers with point detectors. Anal. Chem. 69: 327-332. PMID:9030050

Y. Yang, C. Bergmann, J. Benen, R. Orlando. 1997. Identification of the glycosylation site and glycan structures of recombinant endopolygalacturonase II by mass spectrometry. Rapid Commun. Mass Spectrom. 11: 1257-1262. PMID:9276972

A. Brockman, R. Orlando. 1996. Calculating empirical formulas. Anal. Chem. 68: 484A-485A.

A. Brockman, R. Orlando. 1996. New immobilization chemistry for probe affinity mass spectrometry. Rapid Commun. Mass Spectrom. 10: 1688-1692. PMID:8914339

V.S.K. Kolli, R. Orlando. 1996. A new matrix for MALDI on magnetic sector instruments with point detectors. Rapid Commun. Mass Spectrom. 10: 923-926.

R. Orlando, S. He, V.S.K. Kolli, K. Wu, S. Pan. 1996. The primary structure of human bB1-crystallin from normal lenses. Invest. Opthalmol. Vis. Sci. 37: S597-.

T.J.W. Stokkermans, R. Orlando, V.S. Kumar Kolli, R.W. Carlson, N.K. Peters. 1996. Biological activities and structures of Bradyrhizobium elkanii low abundance lipo chitin-oligosaccharides. Mol. Plant-Microbe Interac. 9: 298-304.

Y. Yang, R. Orlando. 1996. Simplifying the exoglycosidase digestion/MALDI-MS procedures for sequencing N-linked carbohydrate side chains. Anal. Chem. 68: 570-572. PMID:8712364

Y. Yang, R. Orlando. 1996. Identifying the glycosylation sites and site-specific carbohydrate heterogeneity of glycoproteins by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 10: 932-936. PMID:8777327

W.S. York, V.S.K. Kolli, R. Orlando, P. Albersheim, A.G. Darvill. 1996. The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydr. Res. 285: 99-128. PMID:9011379

A. Brockman, R. Orlando. 1995. Probe-immobilized affinity chromatography/mass spectrometry. Anal. Chem. 67: 4581-4585. PMID:8633790

B. Francis, J. Schmidt, Y. Yang, R. Orlando, I.I. Kaiser. 1995. Anions and the curious gel filtration behavior of notexin and scutoxin. Toxicon. 33: 779-789. PMID:7676469

S. He, S. Pan, K. Wu, I.J. Amster, R. Orlando. 1995. Analysis of normal human fetal eye lens crystallins by high performance liquid chromatography/mass spectrometry. J. Mass Spectrom. 30: 424-431.

M.J. Kieliszewski, M.A. O'Neill, J. Leykam, R. Orlando. 1995. Tandem mass spectrometry and structural elucidation of glycopeptides from a hydroxyproline-rich plant cell wall glycoprotein indicate that contiguous hydroxyproline residues are the major sites of hydroxyproline O-arabinosylation. J. Biol. Chem. 270: 2541-2549. PMID:7852316

K.V.S. Kolli, R. Orlando. 1995. Complete sequence confirmation of large polypeptides by high energy collisional activation of multiply protonated ions. J. Am. Soc. Mass Spectrom. 6: 234-241.

R. Orlando, S. He, K. Wu, S. Pan. 1995. Comparison of the water-soluble crystallins from normal and age-related cataractous human lenses. Invest. Opthalmol. Vis. Sci. 36: S626-.

R. Orlando, Y. Yang. 1995. Glycosylation site mapping by MALDI mass spectrometry. Glycoconj. J. 12: 402-.

D.A. Powell, R. Orlando, J. Travis, H. Van Halbeek. 1995. N-glycosylation site mapping of human plasma a1-antichymotrypsin. Glycoconj. J. 12: 411-.

A.J. Alpert, M. Shukla, A.K. Shukla, L.R. Zieske, S.W. Yuen, M.A.J. Ferguson, A. Mehlert, M. Pauly, R. Orlando. 1994. Hydrophilic-interaction chromatography of complex carbohydrates. J. Chromatogr. A. 676: 191-202.

R. Ubillas, S.D. Jolad, R.C. Bruening, M.R. Kernan, S.R. King, D.F. Sesin, M. Barrett, C. Stodart, T. Flaster, J. Kuo, F. Ayala, E. Mesa, E. Rozhon, M.S. Tempesta, D. Barnard, J. Huffman, D. Smee, R. Sidwell, S. Spruance, M. McKeough, A. Brazier, S. Safrin, R. Orlando, P.T.M. Kenny, N. Berova, K. Nakanishi. 1994. SP303, an antiviral agent from Sangre de grado. Phytomedicine 1: 77-106.

K.A. Lerro, R. Orlando, H. Zhang, P.N.R. Usherwood, K. Nakanishi. 1993. High-performance liquid chromatographic systems for the separation of "sticky" peptides from membranes. Anal. Biochem. 215: 38-44.

R. Orlando, P.T.M Kenny, C. Moquin-Pattey, K.A. Lerro, K. Nakanishi. 1993. Sequencing membrane proteins by tandem mass spectrometry. Org. Mass Spectrom. 28: 1395-1402.

L.P. Kotra, R. Zhang, R. Fridman, R. Orlando, S. Mobashery. 0. N-glycosylation pattern of the zymogenic form of human matrix metalloproteinase-9. Bioorg. Chem. 30: 356-370. PMID:12485595

Book Chapters

G. Gutierrez-Sanchez, P. Shah, J.A. Atwood, D. Lennon, E.L. Tran, P. Albersheim, A. Darvill, R. Orlando, S.C. Wu. 2011. Proteomics of pathogen-host interactions: Magnaporthe grisea-rice as a model. In: Phytopathology in the Omics Era (R. Rodriguez-Herrera, C.N. Aguilar, J.K. Simpson-Williamson, G. Gutierrez-Sanchez Eds.), pp. 161-174. Research Signpost.

R. Orlando. 2010. Quantitative Analysis of Glycoprotein Glycans. In: Mass Spectrometry of Glycoproteins (Steven Patrie and Jen Kohler, eds.), Vol.In Press. Humana Press Inc..

R. Orlando. 2009. Quantitative glycomics . In: Functional Glycomics (Ed., Li, Jianjun), pp. 31-49. Humana Press Inc..

S.C. Wu, J. Johnson, A.G. Darvill, P. Albershiem, R. Orlando. 2004. Proteomics of Magnaporthe grisea: liquid chromatography mass spectrometry for the identification of extracellular proteins . In: Rice Blast Disease: Interaction with Rice and Control (S. Kawasaki, ed.), pp. 39-46. Kluwer Press, Dordrecht, The Netherlands.

C.W. Bergmann, L. Stanton, D. King, R.P. Clay, G. Kemp, R. Orlando, A. Darvill, P. Albersheim. 2003. Recent observations on the specificity and structural conformation of the polygalacturonase-polygalacturonase inhibiting protein system. In: Advances in Pectin and Pectinase Research (F. Voragen, H. Schols, and R. Visser, eds.), pp. 277-291. Kluwer Academic Publishers, The Netherlands.

V.S.K. Kolli, J. Johnson, R. Orlando, A.G. Darvill, P. Albersheim, S.-C. Wu. 2003. Proteomic identification of extracellular proteins secreted by the rice blast fungus. In: Proceedings of the 51st American Society of Mass Spectrometry Conference, Montreal, Canada, June 8-12 .

R. Orlando, Y. Yang. 1998. Analysis of glycoproteins. In: Mass Spectrometry of Biological Materials (B.S. Larsen and C.N. McEwen, eds.), pp. 215-246. New York: Marcel Dekker, Inc.

R. Orlando, Y. Yang. 1997. Picoscale sequencing of glycoprotein glycans with mass spectrometry. In: Proceedings of the Seventh National Symposium on Mass Spectrometry (S.K. Aggarwal and H.C. Jain, eds.), pp. 145-157. Indian Society for Mass Spectrometry.

To Top

Home | Research | Personnel | Publications | Databases | Facilities | Services | Training | Seminars
Employment | CCRC History | Location | Links | Resources | Contact Us