CCRC Biomolecular Interaction Laboratory

Overview

Biacore instruments

Policies and Procedures

Scheduling

Charges for usage

Biacore papers from CCRC

Contact us

Biomolecular Interaction Laboratory


The Biomolecular Interaction Laboratory at the CCRC provides campus researchers surface plasmon resonance (SPR) for real-time monitoring of macromolecular interactions without the need for labels via the Biacore optical biosensor. Dr. Gerardo Gutierrez is the coordinator of this laboratory, which currently has a Biacore 3000 and a Biacore T100 utilizing BIAcontrol software. Biacore instruments are available on collaboration or a fee-for-service basis to researchers at the University of Georgia as well as researchers from other institutions or companies. SPR systems monitor molecular interactions in real-time using a label-free detection method. A sample in solution is injected over a sensor surface on which the potential interacting partner(s) are immobilized, either singly in individual flow cells or as part of an array. As the injected sample interacts with the immobilized partners, the refractive index at the interface between the sensor surface and the solution alters to a degree proportional to the change in mass at the surface. The phenomenon of surface plasmon resonance (SPR) is exploited to detect these changes in real time and data are presented in a 'sensogram', a profile of SPR response plotted against time. The sensogram traces the association and dissociation of complexes over the entire course of an interaction, with the kinetics revealed by the shape of the binding curve.
Figure1


Biacore instruments


Biacore 3000 The Biacore 3000 is our basic tool for exploring protein function and is useful for samples ranging from small molecules to crude extracts, lipid vesicles, viruses, bacteria and eucaryotic cells. The Biacore 3000 is designed for individual sample characterization.

Biacore T100 The Biacore T100 can do everything that the 3000 can do, plus analyse low MW drug candidates to high molecular weight proteins (also DNA, RNA, polysaccharides, lipids, cells and viruses), in various samples environments, e.g. In DMSO-containing buffers, plasma and serum. The injection volume range from 2-350 μL (application dependent) and the range of flow rate are from 1-100 μL/min. The disadvantage of the T-100 is that it is less tolerant of impurities as compared to the 3000. Also, the cost of supplies is somewhat higher.

Typical working ranges:
* Association rate constant (ka): 103-107 M-1s-1 (and higher for macromolecular analytes)
* Dissociation rate constant (kd): 10-5-0.5 s-1
* Sample concentration: 10-3-10-11M
* Molecular weight detection: >100 Da
* Recovery specifications: 1.5 μL analyte recovery volume



Policies and Procedures


All new users need to be trained or provide convincing evidence of past training. Each user will be responsible for keeping track of sensor chips, supplies, reagents, and disposables used; clean-up of the immediate laboratory area; and specified maintenance of the instrument.

Investigators must purchase a Biacore Getting Starter Kit (BR-1005-50 for Biacore 300 and BR-1006-50 for Biacore T100) and a CM-5 chip (catalogue # BR-1000-12 for Biacore 3000 and catalogue # BR-1005-30 for Biacore T100) that will be used during training. After training is completed the investigator can schedule time on the instrument.




Scheduling


Sign up is done in one-day blocks and you are allowed to sign for a maximum of 3 days in a row, including the weekend. Please contact Gerardo Gutierrez at gerardo@ccrc.uga.edu (706-542-4428) or visit The Complex Carbohydrate Research Center, Lab 2085.



Charges for usage


Biacore 3000
The fees for using the instruments are to cover the cost of instrument maintenance and are:
* The cost for use of the Biacore 3000 is $325.00/day. This cost includes instrument time and labor. (We run the samples for you).
* The fee for instrument time only is $150.00/day (The user must have some experience on the Biacore).
* You will need to buy your own consumables (sensor chips, buffer, vials, etc) for your experiments.

Biacore T-100
* The cost for use of the Biacore T100 is $375.00/day. This cost includes instrument time and labor (We run the samples for you).
* The fee for instrument time only is $175.00/day for the T-100 (The user must have some experience on the Biacore).
* Users will need to buy their own consumables (sensor chips, buffer, vials, etc) for your experiments.




Biacore papers from CCRC


  1. Stephane L Benoit, Robert J Maier. Mua (HP0868) is a nickel-binding protein that modulates urease activity in Helicobacter pylori. MBio.2011; 2(3):21673188
  2. Zhang S, Condac E, Qiu H, Jiang J, Gutierrez-Sanchez G, Bergmann C, Handel T, Wang L.(2011). Heparin-Induced Leukocytosis Requires 6-O-Sulfation and is Caused by Blockade of Selectin- and CXCL12-Mediated Leukocyte Trafficking in Mice. JBC/2011/314716 (In press)
  3. Stephanie H. Stalnaker, Sana Hashmi, Jae-Min Lim, Kazuhiro Aoki, Mindy Porterfield, Gerardo Gutierrez-Sanchez, James Wheeler, James M. Ervasti, Carl Bergmann, Michael Tiemeyer, Lance Wells. (2010). Site-mapping and characterization of O-glycan structures on alpha-dystroglycan isolated from rabbit skeletal muscle. JBC, 285(32):24882-24891
  4. Asong, J., Wolfert, M. A., Maiti, K. K., Miller, D. & Boons, G. J. Binding and cellular activation studies reveal that Toll-like receptor 2 can differentially recognize peptidoglycan from Gram-positive and Gram-negative bacteria. J. Biol. Chem. 284, 8634-8644 (2009).
  5. RL Rich, et al. 2009. A global benchmark study using affinity-based biosensors. Anal Biochem. 386(2): 194-216
  6. Chen J, Hua G, Jurat-Fuentes JL, Abdullah MA, Adang MJ. 2007. Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. Proc. Natl. Acad. Sci. USA 104: 13901-13906.
  7. D.A. Joubert, I. Kars, L. Wagemakers, C. Bergmann, G. Kemp, M.A. Vivier, J.A.L. Van. 2007. A polygalaturonase inhibiting protein from grapevine reduces the sumptoms of th endopolygalacturonase BcaPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol. Plant-Microbe Interact. 20: 392-402.
  8. Karaveg K, Moremen KW. Energetics of substrate binding and catalysis by class 1 (glycosylhydrolase family 47) alpha-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem 280: 29837-29848, 2005
  9. Karaveg K, Siriwardena A, Tempel W, Liu ZJ, Glushka J, Wang BC, Moremen KW. Mechanism of class 1 (glycosylhydrolase family 47) a-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem 280: 16197-16207, 2005
  10. Kumar S., Roychowdhury A., Ember B., Wang Q., Guan R., Mariuzza R. A., Boons G. J. (2005) J. Biol. Chem. 280, 37005-37012
  11. Rongjin Guan, Abhijit Roychowdury, Brian Ember, Sanjay Kumar , Geert-Jan Boons, and Roy A. Mariuzza. Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proc. Natl Acad. Sci. U.S.A 2004, 101: 17168-17173




For more information Please contact either:


Gerardo Gutierrez-Sanchez, Ph.D.
Assitant Research Scientist
Complex Carbohydrate Research Center
The University of Georgia
315 Riverbend Road
Athens, Georgia, 30602, USA
Phone: +(1)-706-542-4428
Fax: +(1)-706-542-4412
email: gerardo@ccrc.uga.edu

Or

Parastoo Azadi, Ph.D.
Technical Director
Complex Carbohydrate Research Center
315 Riverbend Road
Athens, Georgia 30602-4712
Tel: 706-583-0629
Fax: 706-542-4412
email:azadi@ccrc.uga.edu