Chapter 12
Membrane Structure and Function
(Problems: 1-6,8,10-15,17,19-20,22,24-26,28-30.)

- Sheetlike structures, closed boundaries
- Lipids, proteins, carbohydrates
- Amphipathic, barrier function
- Protein pumps, channels, receptors, transducers, and enzymes
- Noncovalent
- Asymmetric
- Fluid
- Electrical polarity
12.1 Phospholipids and Glycolipids from Bimolecular Sheets

- The hydrophobic effect; entropy of water.
- Van der Waals forces.
- Electrostatic
- H-bonds
Formation of Lipid Vesicles

Potential for targeted drug delivery

Figure 12.2
Biochemistry: A Short Course, Second Edition
© 2013 W.H. Freeman and Company

Figure 12.3
Biochemistry: A Short Course, Second Edition
© 2013 W.H. Freeman and Company
Permeability of Lipid Bilayers

![Diagram showing permeability of different molecules through lipid bilayers.](image)

Figure 12.4
Biochemistry: A Short Course, Second Edition
© 2013 W. H. Freeman and Company
12.2 Membrane Fluidity

Dependent on length of fatty acyl chains and their degree of unsaturation.
12.3 Membrane Proteins

- Pumps, channels, receptors, enzymes.
- Varying protein content; e.g. 18 – 75%
- Different proteins = different functions.
Types of Membrane Proteins

- Transmembrane Integral
- Peripheral
- Lipid anchored

Prostaglandin H₂ synthase-1

bacteriorhodopsin

Porin

Figure 12.8
Biochemistry: A Short Course, Second Edition
© 2013 W. H. Freeman and Company

Figure 12.9
Biochemistry: A Short Course, Second Edition
© 2013 W. H. Freeman and Company

Figure 12.11
Biochemistry: A Short Course, Second Edition
© 2013 W. H. Freeman and Company
Clinical Insight: Prostaglandin H2 Synthase-1 and Aspirin

Cyclooxygenase (COX)

Aspirin (Acetylsalicylic acid)
12.4 Diffusion of Membrane Lipids and Proteins

Fluid mosaic model

Lateral diffusion shown by **fluorescence recovery after photobleaching (FRAP)**.

- Rafts
- Diffusion barrier
- Two-dimensional solutions
- Membrane asymmetry
12.5 Membrane Protein Transporters

- **Diffusion**
 - **Simple**
 - **Facilitated (Passive transport)**

 Down ("with") a concentration gradient. Does not require energy.

 \[\frac{V_{\text{max}}}{2} \]

- **Active transport**
 Up ("against") a concentration gradient. Does require energy.

\[v = \frac{V_{\text{max}} [S]_{\text{out}}}{K_{tr} + [S]_{\text{out}}} \]

- Initial rate of transport increases until a maximum is reached (site is saturated)
Active Transport: the Sodium/Potassium ATPase Pump

Na⁺ and K⁺ transported against a concentration gradient; energy is provided via coupling to ATP hydrolysis.

A p-type ATPase
Ca²⁺ ATPase
Gastric H⁺-K⁺ ATPase

Cell volume
Electronic response of neurons and muscle cells
Transport of sugars, amino acids via secondary active transport
Secondary Transporters

Figure 12.20
Biochemistry: A Short Course, Second Edition
© 2013 W. H. Freeman and Company

Figure 12.19
Biochemistry: A Short Course, Second Edition
© 2013 W. H. Freeman and Company
Channel Transport

- Passive
- Rapid
- Specific
- Molecular machines

Voltage gated:
respond to changes in membrane potential.

Ligand-gated:
respond to binding of small molecules.

Nerve Impulse: Na\(^+\) into cell and K\(^+\) out.
The **K⁺ Channel**

The selectivity filter, “filters” water molecules away from the K⁺.

K⁺ channel is 100 X more permeable to K⁺ than to Na⁺.
The K⁺ Channel is Rapid

Cell exterior → Cell interior

Repulsion

Figure 12.25
Biochemistry: A Short Course, Second Edition
© 2013 W. H. Freeman and Company